Video-Based Vehicle Detection and Tracking Using Spatio-Temporal Maps

Yegor Malinovskiy
Graduate Research Assistant
Department of Civil and Environmental Engineering
University of Washington
Seattle, WA 98195
Tel: (206) 543-7827
Email: yegorm@u.washington.edu

Yao-Jan Wu, Ph.D. Student (Corresponding Author)
Graduate Research Assistant
Box 352700
Department of Civil and Environmental Engineering
University of Washington
Seattle, WA 98195-2700
Tel: (206) 685-6817
Email: yaojan@u.washington.edu

Yinhai Wang
Associate Professor
Box 352700
Department of Civil and Environmental Engineering
University of Washington
Seattle, WA 98195-2700
Tel: (206) 616-2696
Fax: (206) 543-5965
Email: yinhai@u.washington.edu

Word count: 4472 + 1750 (7 figures) + 250 (1 table) = 6472 words

Submitted for Presentation and Publication at the 88th Annual Meeting of the Transportation Research Board and for Publication in Transportation Research Record: the Journal of the Transportation Research Board.

Submitted on August 1, 2008
ABSTRACT

Surveillance video cameras have been increasingly deployed along roadways over the past decade. Automatic traffic data collection through surveillance video cameras is highly desirable. However, sight-degrading factors and camera vibrations make it an extremely challenging task.

In this paper, a computer-vision based algorithm for vehicle detection and tracking is presented, implemented, and tested. This new algorithm comprises of four steps: user initialization, ST map generation, strand analysis, and vehicle tracking. It relies on a single, environment insensitive cue that can be easily obtained and analyzed without camera calibration. The proposed algorithm was implemented in Microsoft Visual C++ using OpenCV and Boost C++ graph libraries. Six test video data sets, representing a variety of lighting, flow level, and camera vibration conditions, were used to evaluate the performance of the new algorithm. Experimental results showed that environmental factors do not significantly impact the detection accuracy of the algorithm. Vehicle count errors ranged from 8% to 19% in the tests, with an overall average detection accuracy of 86.6%. Considering that the test scenarios were challenging, such test results are encouraging.

Key words: automated vehicle detection, video detection, edge detection, Hough transform and spatial temporal map.
1. INTRODUCTION

Automated vehicle detection has been an important component of freeway and intersection operation systems for decades. Inductance loop detectors have been the most popular form of detection systems since they were introduced in the early 1960s (1). They are relatively cheap in unit cost when compared with other detector types and can produce reliable traffic counts under most flow scenarios. However, loop detectors have their drawbacks. First, maintenance and installation of loop detectors require lane closures that may generate significant indirect cost (2). Such indirect costs may indeed make loop detector more expensive than many other detector types. Second, loop detectors are point detectors. Several loop detectors are required to obtain advanced traffic parameters, such as vehicle speed and queue lengths, and such loop configurations further increase the costs. Furthermore, embedding inductance loops in pavement often causes damage to the pavement structure and therefore shortens the lifetime of pavements (1).

All these disadvantages have spurred further research in vehicle detection, with computer vision approaches quickly becoming popular alternatives. Video sensors not only have lower maintenance costs, but are also capable of providing richer traffic information than their inductance loop counterparts. Speed, queue lengths, and individual vehicle delay can be extracted from video images with proper video detection algorithms. However, since video-based vehicle detection algorithms are based on visual data, environmental factors and occlusions play significant roles in detection accuracy.

Good visibility of objects of interest is a key assumption in any video-based detection mechanism. Environmental impacts may degrade the visibility or alter the appearance of the objects in the scene. A robust video detection system should be insensitive to the impacts of shadows, sun glare, rapidly changing lighting, and sight disturbing conditions, such as heavy rain. Additionally, vibration is a very common problem for pole mounted cameras. The resulting movements of camera vibration often cause displacements of static objects between current frame and background frame and therefore trigger a significant amount of false alarms in vehicle detection.

Vehicle occlusions are prevalent in most observation angles and are perhaps the most challenging to overcome. Occlusions result when one vehicle appears next to another and obscures it partially or completely. Typically, video-based vehicle detection systems will interpret two occluded vehicles as one, leading to undercounting errors. Therefore, occlusion issues must be properly addressed in video-based vehicle detection algorithms to improve detection accuracy.

In this paper, we present a novel approach for mitigating the environmental and occlusion impacts on video-based vehicle detection accuracy. The paper is organized as follows: a brief overview of the state of art is provided in Section 2, followed by the detailed description of the proposed algorithm in Section 3. In Section 4, we present some testing results of the proposed algorithm. Then we conclude the study and recommend future studies in the last section of this paper.

2. STATE OF THE ART
Video-based vehicle detection has received much attention in the past two decades (see for example 3, 4, 5, and 6). Various algorithms have been developed and implemented, and resulted in several off-the-shelf commercial products, such as AutoScope and Traficon (7 and 8). Unfortunately, many of these existing systems require ideal camera settings that are difficult to achieve, uncongested traffic flow conditions, or clear weather conditions for accurate detection. Most systems also typically require extensive calibration before being used for traffic data collection.

Automatic vehicle detection mainly consists of three steps: detection, classification, and tracking. The detection step is to segment objects of interest from its background. The classification step is to recognize the types of the segmented objects and put them into the right categories. The tracking step is to re-identify the same object in a sequence of frames to enable movement data collection over a distance. Through the above three steps, a complete spatio-temporal trajectory for each vehicle appearing in the field of view can be collected.

Various visual cues and patterns have been explored to accomplish the above steps. A common approach for vehicle detection is background subtraction. This method is based on the subtraction of a “static background” image from the current frame, thus revealing the objects in motion. The background image is commonly generated by processing several previous frames. This approach only performs well when each vehicle object can be completely segmented and there are no sight-degrading factors present, such as heavy rain, shadow, camera vibration, and sun glare. More complete overviews of the background subtraction method and some issues associated with this method can be found in (6, 9, and 10).

Model-based approaches have also been popular means of detecting and classifying vehicles (11 and 12). These approaches rely on a library of vehicle images as well as a model searching algorithm. The results of these approaches can also be significantly affected by sight-degrading factors.

Kanade-Lucas-Tomasi (KLT) feature tracking has been a popular technique for vehicle tracking due to its relative insensitivity to noise and environmental effects (13). This method relies on motion-based features in the image and their respective locations for both tracking and detection. Motion-based feature points are those points with high gradient values in both the X and Y direction. These points can be found regardless of environmental conditions or camera movement. Hence, the KLT algorithm has been selected as one of the ideal candidates for vehicle tracking. Grouping the points, however, can be a challenging problem. Beymer et. al. (14) suggested aggregating the points based on relative speeds, but those can often be too similar in relative speed to distinguish and distorted due to perspective. Kanhere and Birchfield (15) utilized a similar notion but used background subtraction to locate ground-plane features as a more accurate measurement of vehicle location, effectively reducing perspective distortion. Results obtained using this method are very promising, yet background subtraction is still subject to some environmental constraints.

Scan-line-based approaches gained early attention in vehicle detection because these approaches provide a convenient way of reducing input data and are suitable for real-time applications. Niyogi et.al (16) presented a unique approach to detecting pedestrian motion. The approach used a scan-line to obtain the spatio-temporal information of moving objects. These values retrieved from a scan-line were composed
together along the time axis to create “XT-lines”, a spatio-temporal map. Another scan-line concept was adopted by Zhang et. al. (6) to detect vehicles by comparing the pixel values along a detection line between the composed background image and the current input frame. Liu and Yang (17) recently attempted to extend this notion to vehicle tracking. However, they resort to background subtraction to segment the resulting strands, leaving the system vulnerable to environmental factors.

3. METHODOLOGY

Based on the strengths and weaknesses of the abovementioned methods, we propose a new computer vision based algorithm for producing vehicle trajectories. Once vehicle trajectories are available, good volume counts can be extracted even when vehicles are occluded. This new algorithm contains four primary steps: user initialization, Spatio-Temporal (ST) map generation, strand analysis, and vehicle tracking. Each step may be composed of several finer steps. Details of these primary steps are marked in dashed boxes in the flow chart shown Figure 1.

FIGURE 1 Flow chart of the proposed algorithm.

The first step is performed only once and contains three sub-steps: defining a detection zone, perspective transformation, and locating the scan-line on the lane of interest. A user must specify the detection zone of interest before proceeding on anything else. Then a homography transformation is conducted for the specified detection zone. A detection zone may contain multiple travel lanes. The user needs to draw a scan line on
each lane from which vehicle trajectory data will be collected in the transformed
detection zone. After these user initializations, an ST map can be generated, in the second
primary step, for vehicles traversing each data collection lane. Concurrently with the
second step, the Hough line transform is used to retrieve a set of lines that describe the
ST map.

The third primary step includes two sub-steps: Canny edge (18) detection and
Hough transform (19). Through these sub-steps, lines representing spatio-temporal
movements of vehicles are obtained. By grouping these lines, individual vehicles can be
identified and tracked in the last step of the proposed algorithm.

In this four-step approach, the ST map plays an important role. Though it is the
second step in the algorithm, we prefer introducing it first. We believe that a good
understanding of the ST map will be helpful for understanding the user initialization
process, strand analysis, and vehicle tracking steps.

Generating the Spatio-Temporal Map (ST Map)

An ST map shows the time progression of a particular pixel-wide slice of the image. This
slice of the image corresponds to the user defined scan-line, as is illustrated in Figure
2(a). The pixel intensity values along this line are captured at every frame and are stacked
onto the ST map along the time axis, as is shown Figure 2(b). All pixels along the scan-
line will leave traces. A group of traces captured from a moving object will form a
diagonal strand. This implies that each strand represents a separate object moving along
the scan-line.

![Figure 2 An ST Map Example.](image)

Compared to other vehicle detection and tracking methods, the ST map is fairly robust to
sight-degrading factors, minor camera vibrations, and level of scene luminance. In
addition, since an ST map can be used to track the spatial movement of an object,
different types of occlusions may be distinguished as well.

User Initialization
As is shown in Figure 2(b), if a scan-line is drawn on an input image without proper image transformation, the resulted ST map will be distorted due to the perspective effect. A distorted ST map creates more difficulties in strand analysis and does not accurately reflect the true trajectories of the vehicles. Hence, a perspective transformation is necessary to reduce distortion caused by the perspective effect on a 2-D image.

To accomplish this, the user should define a detection zone on the road surface in the input image. This detection zone should correspond to a square in the real world, with two edges parallel to the vehicle’s travel direction and the other two edges perpendicular to it. As shown in Figure 3(a), the user-defined detection zone, marked by the red quadrilateral on the image, can be transformed to a top-view image (see Figure 3(b)). We can see that lane division markers are approximately parallel to each other, indicating that the perspective effect has been corrected through the transformation. After constructing a scan-line on the top-view image, an ST map can be generated. The ST map expands from the left to the right with time. Figure 3(c) demonstrates an example ST map that shows three vehicles has passed the detection zone via the right-most lane at a nearly constant speed.

When the perspective transformation is performed through this approach, only the image points on the ground have accurate transformations. Points above the ground plane, however, are distorted as you may have noticed from Figure 3. In addition, the height distortion of a vehicle enlarges as the distance between the vehicle and the camera increases.

![Figure 3](image-url)

FIGURE 3 User initialization: (a) defining a detection zone, (b) user defined detection zone after perspective transformation, and (c) ST map retrieved from a scan-line.

Transforming the scene image to the top-view image is performed through the homography matrix H_{ab}. To compute H_{ab}, we need to know the real-world coordinates for at least four points in the 2-D scene image and four more in the real world. A homography is a mapping relationship between a point on a ground plane and the same
point on an image plane. The perspective transformation is computed using a 3x3 homography matrix H_{ab}:

$$
H_{ab} = \begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & h_{33}
\end{bmatrix}
$$ \hspace{1cm} (1)

If a point p_a in the image scene can be represented as $p_a = \begin{bmatrix} x_a & y_a & 1 \end{bmatrix}^T$ and its corresponding matching point p_b in the real world can be represented as $p_b = \begin{bmatrix} x_b & y_b & 1 \end{bmatrix}^T$, then the homography matrix can be computed using eight known points and the relationships: $p_a = H_{ba}p_b$ and $p_b = H_{ab}p_a$. Once elements in H_{ab} are fully determined, coordinate conversion relationship between the image coordinates and the top-view image can be established. The required points are obtained directly from user input – the square detection zone defined by the user serves as the four image coordinate points. Using the length of the bottom edge of the user drawn zone to create a hypothetical separate perfect square yields the set of real-world coordinates, which is represented by the yellow square in Figure 3(a). This set of points only yields a rough, relative conversion, but that is all that is necessary to obtain linear trajectories at constant speeds.

Figure 4 shows the ST maps obtained from a variety of scenes. The row (a) and (c) show the input images, and the row (b) and (d) show its corresponding results of ST maps.
FIGURE 4 ST Maps for various traffic environments.

Strand Analysis

Once the ST map is obtained, vehicle trajectories can be retrieved through strand analysis. This analysis aims at recognizing the strands present in the ST map and obtaining the coordinates along every strand to reconstruct the vehicle trajectories.

As mentioned earlier, strand analysis will be accomplished through two finer steps: Canny edge detection and Hough transform. Figure 5 illustrates the procedure of the proposed approach. Figure 5(a) shows the top-view detection zone with a scan-line on the rightmost lane. Figure 5(b) shows a snapshot of the extracted ST map. We can see that there are three strands in this snapshot, indicating three vehicles passed in the rightmost lane along the scan line. As shown in Figure 5(c), Canny edges on the ST map are extracted by applying the Canny filter (18). The Hough line transform (19) is then applied to the Canny edges to retrieve complete lines from the strands. These identified complete lines are hereafter referred to as “Hough lines”. In Figure 5(d), these Hough lines are superimposed on the ST-map to demonstrate the accuracy of the algorithm.
FIGURE 5 Strand analysis: (a) top-view detection zone with a scan-line, (b) ST map, (c) Canny edges of the ST map, and (d) the result of Hough transform.

As mentioned earlier, the height distortion of a vehicle grows as the vehicle moves away from the camera. This implies that the extensions of all the Hough lines for each individual vehicle should theoretically converge at one point, illustrated in Figure 6. This characteristic of the obtained Hough lines serves as an important cue for detection and occlusion reasoning. The vehicle tracking problem now becomes an exercise in clustering the Hough lines.

One should note that a vehicle’s ST trajectory is linear only when the vehicle is traveling straight and maintain a constant speed through the detection zone. This approach is not valid in the cases that the vehicle speed would vary significantly or a significant curvature is present in the highway geometry through the detection zone. To solve this problem, the detection zone can be defined to a smaller subset of the image, or a curve detection algorithm should be used. In this paper, only linear strands are considered based on the assumption that the vehicle travels with an approximately constant speed in the detection zone.
Vehicle Tracking

In reality, the Hough lines generated by the same vehicle may not converge to a single point due to the inherent error and redundancy of the Hough transform. A simplified sample problem is illustrated in Figure 7(a), the dashed rectangle is the ST-map being processed and Lines 1 through 7 are the extracted Hough lines. Grouping these lines by clustering these intersection points is a feasible solution but can be complicated, particularly when the number of the existing clusters is unknown.

Analyzing the intersections of the Hough lines is the key to determining the Hough line groups. Here we need to introduce the concept of “first intersection,” a notion used to group related Hough lines. First intersection for a Hough line is defined as the first intersection with another Hough line that happens below the bottom of the ST map, towards the hypothetical point of convergence. A Hough line may intersect with multiple other Hough lines, but only the first intersection for a particular line is of interest.

Once the first intersection is found for a Hough line, the two intersecting lines are regarded as a Hough-line pair. The Hough-line pair relationships can be represented by a connected graph with undirected edges. Each node represents a Hough line. An edge represents a first intersection relationship between the connected two nodes. Hough lines generated by the same vehicle can be grouped together through a connected component analysis (23). Figure 7 demonstrates the concept of connected component analysis. The proposed algorithm searches from the bottom of the ST Map to find the first intersection point for each Hough line. As is shown in Figure 7(a), all the first intersection points are highlighted with large dots. For example, Line 7 first intersects Line 6, thus Lines 6 and 7 are regarded as a Hough-line pair. In the connected graph, this new Hough-line pair is represented by adding a new edge to connect nodes 6 and 7. Following the same
procedure, all Hough-line pairs can be identified and represented in the graph as shown in Figure 7(b).

Once the graph has been completely constructed, a depth-first search algorithm is used to determine the connected components which represent the line groups. The depth-first algorithm, commonly used in Graph theory, is a powerful tool for graph traversal and search (20). The BOOST C++ graph library (22) is used in our implementation to construct these graphs and determine the connected components.

Once the line groups have been established, the current and past positions of a vehicle can be obtained by taking the average slope of all the Hough lines in the same group. The vehicle positions from the trajectories are mapped to the scan-line to display the detected vehicles in motion. In Figure 8, vehicle 24 and vehicle 25 are tracked along the scan-line. This demonstrates the advantage of the ST-map because the historical vehicle trajectories can be easily found by using ST map without implementing other tracking procedures.

FIGURE 7 Demonstration of line grouping for vehicle detection: (a) Hough lines, and (b) Result of the constructed graphs.
4. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C++ using OpenCV (21) and BOOST C++ (22) libraries. The algorithm runs in real-time on a 1.83 Ghz Intel Centrino mobile processor.

The proposed algorithm was tested using six ten-minute video sequences collected at different locations with different traffic flow conditions. Various environments and traffic flow conditions were tested to verify the robustness of the algorithm. As shown in Figure 9, the test sites were chosen from WSDOT surveillance cameras mounted along SR-520 and I-5 in the Greater Seattle area. Figures 9(a), 9(b) and 9(c) show snapshots captured from the SR-520 cameras mounted on a floating bridge. These locations can be especially challenging for computer-vision based vehicle detection and tracking due to camera vibrations caused by wind and structure shake. Furthermore, Figure 9(b) displays a field of view that shows a curved roadway segment. Even though this sequence can be challenging for the vertical scan-line based algorithm, vehicles were still properly detected and tracked using the proposed algorithm. Nighttime vehicle detection has been a very difficult task in computer vision applications. The algorithm was also tested in a nighttime scenario, as shown in Figure 9(c).

Figures 9(d), 9(e), and 9(f) show the captured image from the surveillance cameras deployed along I-5. These cameras also suffer from minor vibration problems, shadows, and sun glaring. For all test scenarios except for that shown in Figure 9(e), the right-most lane of the nearest observed direction was chosen as the data collection lane. For the I-5 50th Street site (Figure 9(e)), the left-most lane of reversible section (the inner group) was selected to determine the effects of a static occlusion, in this case a light pole.
Experimental results for all the six test scenarios are summarized in Table 1. The count accuracies range from 81% to 92%. Considering that the test scenarios are challenging, such results are encouraging. Of the six test scenarios examined, five under-counted vehicles by 8% to 19%. Only the night scene on SR-520 or the test scenario shown on Figure 9(c) over-counted vehicles by 15.4%. This over-count error was largely caused by the invisible (non-texture) areas between the lighted front and rear ends of some vehicles. The invisible areas generate gaps in the ST map which can cause the grouping algorithm to prematurely group the front and rear areas separately into two vehicles. Besides the high night-time false positive rate, the algorithm tended to under-count vehicles in most test scenarios. This was determined to be caused by the inconsistencies created by the probabilistic Hough transform implementation in OpenCV. The probabilistic implementation of the Hough transform provided different lines at every frame, sometimes providing inconsistent results that were responsible for the loss of the moving objects.

TABLE 1 Test Results.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Location</th>
<th>Conditions</th>
<th>Duration</th>
<th>Manual Count</th>
<th>Algorithm Count</th>
<th>Count Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>9(a)</td>
<td>SR-520 WEST HIGHRISE E</td>
<td>Camera vibration</td>
<td>10 min.</td>
<td>187</td>
<td>161</td>
<td>-13.9%</td>
</tr>
<tr>
<td>9(b)</td>
<td>SR-520 WEST HIGHRISE</td>
<td>Curvature, vibration</td>
<td>10 min.</td>
<td>225</td>
<td>207</td>
<td>-8.0%</td>
</tr>
<tr>
<td>9(c)</td>
<td>SR-520 EAST HIGHRISE</td>
<td>Night-time</td>
<td>10 min.</td>
<td>130</td>
<td>150</td>
<td>+15.4%</td>
</tr>
<tr>
<td>9(d)</td>
<td>I-5 SOUTHCENTER</td>
<td>Shadows, vibration</td>
<td>10 min.</td>
<td>264</td>
<td>222</td>
<td>-15.9%</td>
</tr>
<tr>
<td>9(e)</td>
<td>I-5 50TH ST</td>
<td>Light pole, shadows</td>
<td>10 min.</td>
<td>100</td>
<td>81</td>
<td>-19.0%</td>
</tr>
<tr>
<td>9(f)</td>
<td>I-5 KLIswick</td>
<td>Glare, vibration</td>
<td>10 min.</td>
<td>165</td>
<td>151</td>
<td>-8.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>60 min.</td>
<td>1071</td>
<td>972</td>
<td>(average absolute error =13.4%)</td>
</tr>
</tbody>
</table>

Occlusions and Vehicle Shadows

Occlusions and vehicle shadows, the most prevalent causes of misdetections, are handled through the inherent characteristics of the proposed algorithm without any additional reasoning.

The use of vertical scan-lines for vehicle detection results in two types of encountered occlusions. The first type is the longitudinal occlusion that occurs between vehicles traveling in the same lane. The second type is the latitudinal occlusion that occurs between vehicles traveling in adjacent lanes. To some extent, the longitudinal occlusions were handled by the proposed Hough line grouping algorithm. Most of the occlusions encountered in all the test scenarios were of the longitudinal type because only one outer lane was selected for each test scenario. For the vehicles with the same height traveling closely at identical speeds, defining a longer scan-line can increase the chances of successful segmentation. Latitudinal occlusions can be avoided by setting a scan-lane on a proper location without being occluded by vehicles in adjacent lanes. Such scan-line
placement is possible for most lanes in common observation angles, as the mounting positions are generally high enough to provide a wide field of view.

Vehicle shadows often pose problems as they are cast by and move with vehicles themselves. These shadows are often mistakenly regarded as additional vehicles by many other computer-vision approaches. Because shadows typically do not contain any inner texture, the output of the ST map will have only two Canny edges for each vehicle shadow. One edge happens on the transition from the regular environment to the shadow region, and the other edge happens on the transition back. Therefore, in order to prevent a shadow from being identified as a vehicle, each line group should contain at least three lines. In our experiments, a vehicle often has more than three Hough lines, as the windshield edges and bumper lines create numerous lines in addition to the vehicle borders. Although this three Hough-line threshold may miss vehicles with extremely low-texture intensity, the chance of having such an event should be sufficiently small. Thus, the application of this threshold has effectively reduced false alarms caused by shadow effects in our experiments. Headlight blooms and reflections on wet pavement have similar attributes and were handled in the same manner.

5. CONCLUSIONS

Surveillance video cameras have been increasingly deployed along roadways over the past decade. Automatic traffic data collection through surveillance video cameras is highly desirable. However, sight-degrading factors and camera vibrations make it an extremely challenging task.

In this paper, a computer-vision based algorithm for vehicle detection and tracking is presented, implemented, and tested. This new algorithm comprises of four steps: user initialization, ST map generation, strand analysis, and vehicle tracking. It relies on a single, environment insensitive cue that can be easily obtained and analyzed without camera calibration. The approach uses spatio-temporal slices that combine to create diagonal strands for every passing vehicle. The strands are then analyzed using the Hough transform to obtain groups of lines. A connected graph of the line objects is constructed for a connected-component analysis. Each connected line group represents one vehicle. Line group data can also be used to reconstruct vehicle trajectories and therefore track vehicles. Six test video data sets, representing a variety of lighting, flow level, and camera vibration conditions, were used to evaluate the performance of the new algorithm. Experimental results showed that environmental factors do not significantly impact the detection accuracy of the algorithm. Vehicle count errors ranged from 8% to 19% in the tests, with an overall average detection accuracy of 86.6%. Considering that the test scenarios were challenging, such test results are encouraging.

In terms of future work, the algorithm can be further improved by modifying the Hough transform implementation to make the detection results more consistent. Also, for more severe occlusions, placing scan-lines on several lanes would be helpful to determine the origin of the occlusion. Heavy latitudinal occlusions can possibly be handled by analyzing all potentially occluding lanes and determining the relationship between the vehicles in each lane. If the relationship appears to be direct, a horizontal scan-line can be
used to determine whether the object extends into the adjacent lane. These directions should be investigated in future studies.

REFERENCES

